4.6 Article

Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean

期刊

PLOS ONE
卷 12, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0175650

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [24510312, 16K07412]
  2. Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan
  3. Grants-in-Aid for Scientific Research [24510312, 16K07412] Funding Source: KAKEN

向作者/读者索取更多资源

Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA) and drought tolerance. We therefore used virus-induced gene silencing (VIGS) to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B), as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV)-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据