4.6 Article

Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats

期刊

PLOS ONE
卷 12, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0171293

关键词

-

向作者/读者索取更多资源

Objective Metformin is known to have a beneficial effect on body weight and body composition, although the precise mechanism has not been elucidated yet. The aim of this study is to investigate the effects of metformin on energy metabolism and anthropometric factors in both human subjects and rats. Methods In human studies, metformin (1500mg/day) was administered to 23 healthy subjects and 18 patients with type 2 diabetes for 2 weeks. Metabolic parameters and energy metabolism were measured during a meal tolerance test in the morning before and after the treatment of metformin. In animal studies, 13 weeks old SD rats were fed 25-26 g of standard chow only during 12-hours dark phase with either treated by metformin (2.5mg/ml in drinking water) or not for 2 weeks, and metabolic parameters, anthropometric factors and energy metabolism together with expressions related to fat oxidation and adaptive thermogenesis were measured either in fasting or post-prandial state at 15 weeks old. Results Post-prandial plasma lactate concentration was significantly increased after the metformin treatment in both healthy subjects and diabetic patients. Although energy expenditure (EE) did not change, baseline respiratory quotient (RQ) was significantly decreased and postprandial RQ was significantly increased vice versa following the metformin treatment in both groups. By the administration of metformin to SD rats for 2 weeks, plasma levels of lactate and pyruvate were significantly increased in both fasting and post-prandial states. RQ during a fasting state was significantly decreased in metformin-treated rats compared to controls with no effect on EE. Metformin treatment brought about a significant reduction of visceral fat mass compared to controls accompanied by an up-regulation of fat oxidation related enzyme in the liver, UCP-1 in the brown adipose tissue and UCP-3 in the skeletal muscle. Conclusion From the results obtained, beneficial effects of metformin on visceral fat reduction has been demonstrated probably through a mechanism for a potential shift of fuel resource into fat oxidation and an upregulation of adaptive thermogenesis independent of an anorexigenic effect of this drug.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据