4.6 Article

Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea (Camellia sinensis)

期刊

PLOS ONE
卷 12, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0171173

关键词

-

资金

  1. National Natural Science Foundation of China [31170651]
  2. Major Science and Technology project in Fujian Province [2015NZ 0002-1]

向作者/读者索取更多资源

MicroRNAs are endogenous non-coding small RNAs playing crucial regulatory roles in plants. Tea, a globally popular non-alcoholic drink, is rich in health-enhancing catechins. In this study, 69 conserved and 47 novel miRNAs targeting 644 genes were identified by high-throughout sequencing. Predicted target genes of miRNAs were mainly involved in plant growth, signal transduction, morphogenesis and defense. To further identify targets of tea miRNAs, degradome sequencing and RNA ligase-mediated rapid amplification of 5' cDNA ends (RLM-RACE) were applied. Using degradome sequencing, 26 genes mainly involved in transcription factor, resistance protein and signal transduction protein synthesis were identified as potential miRNA targets, with 5 genes subsequently verified. Quantitative realtime PCR (qRT-PCR) revealed that the expression patterns of novel-miR1, novel-miR2, csn-miR160a, csn-miR162a, csn-miR394 and csn-miR396a were negatively correlated with catechin content. The expression of six miRNAs (csn-miRNA167a, csn-miR2593e, csn-miR4380a, csn-miR3444b, csn-miR5251 and csn-miR7777-5p. 1) and their target genes involved in catechin biosynthesis were also analyzed by qRT-PCR. Negative and positive correlations were found between these miRNAs and catechin contents, while positive correlations were found between their target genes and catechin content. This result suggests that these miRNAs may negatively regulate catechin biosynthesis by down-regulating their biosynthesis-related target genes. Taken together, our results indicate that miRNAs are crucial regulators in tea, with the results of 5'-RLM-RACE and expression analyses revealing the important role of miRNAs in catechin anabolism. Our findings should facilitate future research to elucidate the function of miRNAs in catechin biosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据