4.8 Article

Mechanism of the cooperative Si-H bond activation at Ru-S bonds

期刊

CHEMICAL SCIENCE
卷 6, 期 7, 页码 4324-4334

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5sc01035g

关键词

-

资金

  1. Fonds der Chemischen Industrie
  2. Deutsche Forschungsgemeinschaft (International Research Training Group Munster-Nagoya) [GRK 1143]
  3. Cluster of Excellence Unifying Concepts in Catalysis of the Deutsche Forschungsgemeinschaft [EXC 314/2]
  4. Grants-in-Aid for Scientific Research [15H00936] Funding Source: KAKEN

向作者/读者索取更多资源

The nature of the hydrosilane activation mediated by ruthenium(II) thiolate complexes of type [(R3P)-Ru(SDmp)](+)[BAr4F]- is elucidated by an in-depth experimental and theoretical study. The combination of various ruthenium(II) thiolate complexes and tertiary hydrosilanes under variation of the phosphine ligand and the substitution pattern at the silicon atom is investigated, providing detailed insight into the activation mode. The mechanism of action involves reversible heterolytic splitting of the Si-H bond across the polar Ru-S bond without changing the oxidation state of the metal, generating a ruthenium(II) hydride and sulfur-stabilized silicon cations, i.e. metallasilylsulfonium ions. These stable yet highly reactive adducts, which serve as potent silicon electrophiles in various catalytic transformations, are fully characterized by systematic multinuclear NMR spectroscopy. The structural assignment is further verified by successful isolation and crystallographic characterization of these key intermediates. Quantum-chemical analyses of diverse bonding scenarios are in excellent agreement with the experimental findings. Moreover, the calculations reveal that formation of the hydrosilane adducts proceeds via barrierless electrophilic activation of the hydrosilane by sterically controlled eta(1) (end-on) or eta(2) (side-on) coordination of the Si-H bond to the Lewis acidic metal center, followed by heterolytic cleavage of the Si-H bond through a concerted four-membered transition state. The Ru-S bond remains virtually intact during the Si-H bond activation event and also preserves appreciable bonding character in the hydrosilane adducts. The overall Si-H bond activation process is exergonic with Delta G(r)(0) ranging from -20 to -40 kJ mol(-1), proceeding instantly already at low temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据