4.6 Article

Exploring Identity-By-Descent Segments and Putative Functions Using Different Foundation Parents in Maize

期刊

PLOS ONE
卷 11, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0168374

关键词

-

资金

  1. Ministry of Science and Technology of China [2016YFD0100303, 2016YFD0100103, 2014CB138200, 2013BAD01B02]
  2. National Natural Science Foundation [91335206]
  3. CAAS Innovation Program
  4. China Postdoctoral Sciences Foundation [2014M550901]

向作者/读者索取更多资源

Maize foundation parents (FPs) play no-alternative roles in hybrid breeding because they were widely used in the development of new lines and hybrids. The combination of different identity-by-descent (IBD) segments and genes could account for the formation patterns of different FPs, and knowledge of these IBD regions would provide an extensive foundation for the development of new candidate FP lines in future maize breeding. In this paper, a panel of 304 elite lines derived from FPs, i.e., B73, 207, Mo17, and Huangzaosi (HZS), was collected and analyzed using 43,252 single nucleotide polymorphism (SNP) markers. Most IBD segments specific to particular FP groups were identified, including 116 IBD segments in B73, 105 in Mo17, 111 in 207, and 190 in HZS. In these regions, 423 quantitative trait nucleotides (QTNs) associated with 15 agronomic traits and 804 candidate genes were identified. Some known adaptation-related genes, e.g., dwarf8 and vgtl in HZS, zcn8 and epc in Mo17, and ZmCCT in 207, were validated as being tightly linked to particular IBD segments. In addition, numerous new candidate genes were also identified. For example, GRMZM2G154278 in HZS, which belongs to the cell cycle control family, was closely linked to a QTN of the ear height/plant height (EH/PH) trait; GRMZM2G051943 in 207, which encodes an endochitinase precursor (EP) chitinase, was closely linked to a QTN for kernel density; and GRMZM2G170586 in Mo17 was closely linked to a QTN for ear diameter. Complex correlations among these genes were also found. Many IBD segments and genes were included in the formation of FP lines, and complex regulatory networks exist among them. These results provide new insights on the genetic basis of complex traits and provide new candidate IBD regions or genes for the improvement of special traits in maize production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据