4.6 Article

The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter

期刊

PLOS ONE
卷 11, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0161354

关键词

-

资金

  1. Fondazione per la Ricerca sulla Fibrosi Cistica [13/2010]
  2. Regione Lombardia-MIUR [30190679]

向作者/读者索取更多资源

The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in gamma-Proteobacteria. LptBFG constitute the IMABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable Delta lptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptF(SupC)). In complementation tests, lptF(SupC) mutants suppress lethality of both Delta lptC and lptC conditional expressionmutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据