4.6 Article

An Activity Index for Raw Accelerometry Data and Its Comparison with Other Activity Metrics

期刊

PLOS ONE
卷 11, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0160644

关键词

-

资金

  1. National Heart, Lung, and Blood Institute (NHLBI)
  2. National Institutes of Health (NIH)
  3. US Department of Health and Human Services [HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, HHSN271201100004C]
  4. NHLBI/NIH [1 R01 HL105065]
  5. NIH/NHLBI [1 R01 HL130483]

向作者/读者索取更多资源

Accelerometers have been widely deployed in public health studies in recent years. While they collect high-resolution acceleration signals (e.g., 10-100 Hz), research has mainly focused on summarized metrics provided by accelerometers manufactures, such as the activity count (AC) by ActiGraph or Actical. Such measures do not have a publicly available formula, lack a straightforward interpretation, and can vary by software implementation or hardware type. To address these problems, we propose the physical activity index (AI), a new metric for summarizing raw tri-axial accelerometry data. We compared this metric with the AC and another recently proposed metric for raw data, Euclidean Norm Minus One (ENMO), against energy expenditure. The comparison was conducted using data from the Objective Physical Activity and Cardiovascular Health Study, in which 194 women 60-91 years performed 9 lifestyle activities in the laboratory, wearing a tri-axial accelerometer (ActiGraph GT3X+) on the hip set to 30 Hz and an Oxycon portable calorimeter, to record both tri-axial acceleration time series (converted into AI, AC, and ENMO) and oxygen uptake during each activity (converted into metabolic equivalents (METs)) at the same time. Receiver operating characteristic analyses indicated that both AI and ENMO were more sensitive to moderate and vigorous physical activities than AC, while AI was more sensitive to sedentary and light activities than ENMO. AI had the highest coefficients of determination for METs (0.72) and was a better classifier of physical activity intensity than both AC (for all intensity levels) and ENMO (for sedentary and light intensity). The proposed AI provides a novel and transparent way to summarize densely sampled raw accelerometry data, and may serve as an alternative to AC. The AI's largely improved sensitivity on sedentary and light activities over AC and ENMO further demonstrate its advantage in studies with older adults.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据