4.6 Article

Stability and Species Specificity of Renal VEGF-A Splicing Patterns in Kidney Disease

期刊

PLOS ONE
卷 11, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0162166

关键词

-

资金

  1. Dutch National Science Academy (KNAW)

向作者/读者索取更多资源

Vascular endothelial growth factor A (VEGF-A) is essential for maintaining the glomerular filtration barrier. Absolute renal levels of VEGF-A change in patients with diabetic nephropathy and inflammatory kidney diseases, but whether changes in the renal splicing patterns of VEGF-A play a role remains unclear. In this study, we investigated mRNA splicing patterns of pro-angiogenic isoforms of VEGF-A in glomeruli and whole kidney samples from human patients with kidney disease and from mouse models of kidney disease. Kidney biopsies were obtained from patients with acute rejection following kidney transplantation, patients with diabetic nephropathy, and control subjects. In addition, kidney samples were obtained from mice with lupus nephritis, mice with diabetes mellitus, and control mice. The relative expression of each VEGF-A splice variant was measured using RT-PCR followed by quantitative fragment analysis. The pattern of renal VEGF-A splice variants was unchanged in diabetic nephropathy and lupus nephritis and was stable throughout disease progression in acute transplant rejection and diabetic nephropathy; these results suggest renal VEGF-A splicing stability during kidney disease. The splicing patterns were species-specific; in the control human kidney samples, VEGF-A 121 was the dominant isoform, whereas VEGF-A 164 was the dominant isoform measured in the mouse kidney samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据