4.6 Article

Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model

期刊

PLOS ONE
卷 11, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0161072

关键词

-

资金

  1. Bundesministerium fur Bildung und Forschung [BMBF-01EO0803, GALENUS-01GM1106F]
  2. Mukoviszidose Institut GmbH [S03/11]

向作者/读者索取更多资源

In vitro disease models have enabled insights into the pathophysiology of human disease as well as the functional evaluation of new therapies, such as novel genome engineering strategies. In the context of cystic fibrosis (CF), various cellular disease models have been established in recent years, including organoids based on induced pluripotent stem cell technology that allowed for functional readouts of CFTR activity. Yet, many of these in vitro CF models require complex and expensive culturing protocols that are difficult to implement and may not be amenable for high throughput screens. Here, we show that a simple cellular CF disease model based on the bronchial epithelial Delta F508 cell line CFBE41o-can be used to validate functional CFTR correction. We used an engineered nuclease to target the integration of a super-exon, encompassing the sequences of CFTR exons 11 to 27, into exon 11 and re-activated endogenous CFTR expression by treating CFBE41o-cells with a demethylating agent. We demonstrate that the integration of this super-exon resulted in expression of a corrected mRNA from the endogenous CFTR promoter and used short-circuit current measurements in Ussing chambers to corroborate restored ion transport of the repaired CFTR channels. In conclusion, this study proves that the targeted integration of a large super-exon in CFTR exon 11 leads to functional correction of CFTR, suggesting that this strategy can be used to functionally correct all CFTR mutations located downstream of the 5' end of exon 11.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据