4.6 Article

Prediction and Quantification of Splice Events from RNA-Seq Data

期刊

PLOS ONE
卷 11, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0156132

关键词

-

资金

  1. Genentech Inc.

向作者/读者索取更多资源

Analysis of splice variants from short read RNA-seq data remains a challenging problem. Here we present a novel method for the genome-guided prediction and quantification of splice events from RNA-seq data, which enables the analysis of unannotated and complex splice events. Splice junctions and exons are predicted from reads mapped to a reference genome and are assembled into a genome-wide splice graph. Splice events are identified recursively from the graph and are quantified locally based on reads extending across the start or end of each splice variant. We assess prediction accuracy based on simulated and real RNA-seq data, and illustrate how different read aligners (GSNAP, HISAT2, STAR, TopHat2) affect prediction results. We validate our approach for quantification based on simulated data, and compare local estimates of relative splice variant usage with those from other methods (MISO, Cufflinks) based on simulated and real RNA-seq data. In a proof-of-concept study of splice variants in 16 normal human tissues (Illumina Body Map 2.0) we identify 249 internal exons that belong to known genes but are not related to annotated exons. Using independent RNA samples from 14 matched normal human tissues, we validate 9/9 of these exons by RT-PCR and 216/249 by paired-end RNA-seq (2 x 250 bp). These results indicate that de novo prediction of splice variants remains beneficial even in well-studied systems. An implementation of our method is freely available as an R/Bioconductor package SGSeq.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据