4.6 Article

Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data

期刊

PLOS ONE
卷 11, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0152792

关键词

-

资金

  1. Australian Research Council [DP130104090]
  2. National Natural Science Foundation of China [31371340]

向作者/读者索取更多资源

Background Identifying cancer subtypes is an important component of the personalised medicine framework. An increasing number of computational methods have been developed to identify cancer subtypes. However, existing methods rarely use information from gene regulatory networks to facilitate the subtype identification. It is widely accepted that gene regulatory networks play crucial roles in understanding the mechanisms of diseases. Different cancer subtypes are likely caused by different regulatory mechanisms. Therefore, there are great opportunities for developing methods that can utilise network information in identifying cancer subtypes. Results In this paper, we propose a method, weighted similarity network fusion (WSNF), to utilise the information in the complex miRNA-TF-mRNAregulatory network in identifying cancer subtypes. We firstly build the regulatory network where the nodes represent the features, i.e. the microRNAs (miRNAs), transcription factors (TFs) and messenger RNAs (mRNAs) and the edges indicate the interactions between the features. The interactions are retrieved from various interatomic databases. We then use the network information and the expression data of the miRNAs, TFs and mRNAs to calculate the weight of the features, representing the level of importance of the features. The feature weight is then integrated into a network fusion approach to cluster the samples (patients) and thus to identify cancer subtypes. We applied our method to the TCGA breast invasive carcinoma (BRCA) and glioblastoma multiforme (GBM) datasets. The experimental results show that WSNF performs better than the other commonly used computational methods, and the information from miRNA-TF-mRNA regulatory network contributes to the performance improvement. The WSNF method successfully identified five breast cancer subtypes and three GBM subtypes which show significantly different survival patterns. We observed that the expression patterns of the features in some miRNA-TF-mRNA sub-networks vary across different identified subtypes. In addition, pathway enrichment analyses show that the top pathways involving the most differentially expressed genes in each of the identified subtypes are different. The results would provide valuable information for understanding the mechanisms characterising different cancer subtypes and assist the design of treatment therapies. All datasets and the R scripts to reproduce the results are available online at the website:http://nugget.unisa.edu.au/Thuc/cancersubtypes/.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据