4.6 Article

Retrieval of Brain Tumors by Adaptive Spatial Pooling and Fisher Vector Representation

期刊

PLOS ONE
卷 11, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0157112

关键词

-

资金

  1. National Natural Science Foundation of China [61471187, 31371009]
  2. Pearl River Young Talents of Science and Technology in Guangzhou [2013J2200065]
  3. Science and Technology Planning Project of Guangdong Province, China [2015B010106008]
  4. Medical Science and Technology Research Fund of Guangdong [B2014241]

向作者/读者索取更多资源

Content-based image retrieval (CBIR) techniques have currently gained increasing popularity in the medical field because they can use numerous and valuable archived images to support clinical decisions. In this paper, we concentrate on developing a CBIR system for retrieving brain tumors in T1-weighted contrast-enhanced MRI images. Specifically, when the user roughly outlines the tumor region of a query image, brain tumor images in the database of the same pathological type are expected to be returned. We propose a novel feature extraction framework to improve the retrieval performance. The proposed framework consists of three steps. First, we augment the tumor region and use the augmented tumor region as the region of interest to incorporate informative contextual information. Second, the augmented tumor region is split into subregions by an adaptive spatial division method based on intensity orders; within each subregion, we extract raw image patches as local features. Third, we apply the Fisher kernel framework to aggregate the local features of each subregion into a respective single vector representation and concatenate these per-subregion vector representations to obtain an image-level signature. After feature extraction, a closed-form metric learning algorithm is applied to measure the similarity between the query image and database images. Extensive experiments are conducted on a large dataset of 3604 images with three types of brain tumors, namely, meningiomas, gliomas, and pituitary tumors. The mean average precision can reach 94.68%. Experimental results demonstrate the power of the proposed algorithm against some related state-of-the-art methods on the same dataset.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据