4.6 Article

Characterization and Correction of Geometric Distortions in 814 Diffusion Weighted Images

期刊

PLOS ONE
卷 11, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0152472

关键词

-

资金

  1. National Institutes of Health [R01 EB00790]
  2. Medtronic
  3. Doris Duke Charitable Foundation Clinical Scientist Development Award
  4. Sontag Foundation Distinguished Scientist Award
  5. Burroughs Wellcome Fund Career Awards for Medical Scientists
  6. Kimmel Scholar award
  7. Discovery Grant from the American Brain Tumor Association
  8. Accelerated Brain Cancer Cure
  9. William Guy Forbeck Research Foundation
  10. National Science Foundation [1430082]

向作者/读者索取更多资源

Introduction Diffusion Weighted Imaging (DWI), which is based on Echo Planar Imaging (EPI) protocols, is becoming increasingly important for neurosurgical applications. However, its use in this context is limited in part by significant spatial distortion inherent to EPI. Method We evaluated an efficient algorithm for EPI distortion correction (EPIC) across 814 DWI scans from 250 brain tumor patients and quantified the magnitude of geometric distortion for whole brain and multiple brain regions. Results Evaluation of the algorithm's performance revealed significantly higher mutual information between T1-weighted pre-contrast images and corrected b = 0 images than the uncorrected b = 0 images (p < 0.001). The distortion magnitude across all voxels revealed a median EPI distortion effect of 2.1 mm, ranging from 1.2 mm to 5.9 mm, the 5th and 95th percentile, respectively. Regions adjacent to bone-air interfaces, such as the orbitofrontal cortex, temporal poles, and brain stem, were the regions most severely affected by DWI distortion. Conclusion Using EPIC to estimate the degree of distortion in 814 DWI brain tumor images enabled the creation of a topographic atlas of DWI distortion across the brain. The degree of displacement of tumors boundaries in uncorrected images is severe but can be corrected for using EPIC. Our results support the use of distortion correction to ensure accurate and careful application of DWI to neurosurgical practice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据