4.4 Article

A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection

期刊

JOURNAL OF OPTICS
卷 17, 期 12, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2040-8978/17/12/125802

关键词

terahertz antenna; low-temperature grown GaAs; heterogeneous integration; integrated terahertz system

类别

资金

  1. SEED grant
  2. PSC CUNY grant from the City University of New York

向作者/读者索取更多资源

This paper presents heterogeneously integrated bow-tie emitter-detector photoconductive antennas (PCAs) based on low-temperature grown-gallium arsenide (LTG-GaAs) thin-film devices on silicon-dioxide/silicon (SiO2/Si) host substrates for integrated terahertz (THz) systems. The LTG-GaAs thin-film devices are fabricated with standard photolithography and thermal evaporation of metal-contact layers of chromium (Cr), nickel (Ni) and gold (Au). They are etched selectively and separated from their growth GaAs substrate. The LTG-GaAs thin-film devices are then heterogeneously integrated on bow-tie antenna electrodes patterned on the surface of a SiO2/Si host substrate for THz emitters and THz detectors. Cost-effective and selective integration of LTG-GaAs thin-film devices on a Si platform is demonstrated. THz radiation from the fabricated THz PCAs is successfully measured using a pump-probe THz time-domain configuration. The THz temporal duration was measured at full width half maximum of 0.36 ps. Its frequency spectrum exhibits a broadband response with a peak resonant frequency of about 0.31 THz. The demonstration illustrates the feasibility of creating heterogeneously integrated THz systems using separately optimized LTG-GaAs devices and Si based electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据