4.6 Article

Magnetic Nanocomposite Scaffold-Induced Stimulation of Migration and Odontogenesis of Human Dental Pulp Cells through Integrin Signaling Pathways

期刊

PLOS ONE
卷 10, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0138614

关键词

-

资金

  1. National Research Foundation of Korea (NRF) grant - Korean government (MSIP) [2012R1A5A2051384, 2009-0093829]
  2. Korea Healthcare Technology R & D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea [A111412]
  3. Korea Health Promotion Institute [A111412] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Magnetism is an intriguing physical cue that can alter the behaviors of a broad range of cells. Nanocomposite scaffolds that exhibit magnetic properties are thus considered useful 3D matrix for culture of cells and their fate control in repair and regeneration processes. Here we produced magnetic nanocomposite scaffolds made of magnetite nanoparticles (MNPs) and polycaprolactone (PCL), and the effects of the scaffolds on the adhesion, growth, migration and odontogenic differentiation of human dental pulp cells (HDPCs) were investigated. Furthermore, the associated signaling pathways were examined in order to elucidate the molecular mechanisms in the cellular events. The magnetic scaffolds incorporated with MNPs at varying concentrations (up to 10% wt) supported cellular adhesion and multiplication over 2 weeks, showing good viability. The cellular constructs in the nanocomposite scaffolds played significant roles in the stimulation of adhesion, migration and odontogenesis of HDPCs. Cells were shown to adhere to substantially higher number when affected by the magnetic scaffolds. Cell migration tested by in vitro wound closure model was significantly enhanced by the magnetic scaffolds. Furthermore, odontogenic differentiation of HDPCs, as assessed by the alkaline phosphatase activity, mRNA expressions of odontogenic markers (DMP-1, DSPP, osteocalcin, and ostepontin), and alizarin red staining, was significantly stimulated by the magnetic scaffolds. Signal transduction was analyzed by RT-PCR, Western blotting, and confocal microscopy. The magnetic scaffolds upregulated the integrin subunits (alpha 1, alpha 2, beta 1 and beta 3) and activated downstream pathways, such as FAK, paxillin, p38, ERK MAPK, and NF-kappa B. The current study reports for the first time the significant impact of magnetic scaffolds in stimulating HDPC behaviors, including cell migration and odontogenesis, implying the potential usefulness of the magnetic scaffolds for dentin-pulp tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据