4.6 Article

Pharmacokinetics and Bioavailability of a Therapeutic Enzyme (Idursulfase) in Cynomolgus Monkeys after Intrathecal and Intravenous Administration

期刊

PLOS ONE
卷 10, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0122453

关键词

-

资金

  1. Shire

向作者/读者索取更多资源

Intravenous enzyme replacement therapy with iduronate-2-sulfatase is an approved treatment for Hunter syndrome, however, conventional intravenous delivery cannot treat the neurologic manifestations of the disease due to its limited central nervous system penetration. Intrathecal administration of iduronate-2-sulfatase for delivery to the central nervous system is currently under investigation. The objective of this study was to evaluate the pharmacokinetics of idursulfase in the central nervous system of cynomolgus monkeys (Macaca fasicularis) after intravenous and intrathecal administration. Twenty-seven monkeys, treatment-naive to enzyme replacement therapy, were placed into 4 groups according to body weight: Group 1 was administered 0.5 mg/kg idursulfase intravenously, Groups 2-4 were administered an intrathecal formulation (1-, 10-, and 30-mg doses). Blood samples and cerebrospinal fluid (sampled at the cisterna magna or lumbar level) were collected at the same time points for 72 hours post dosing. Following intravenous administration, a high maximum serum concentration and rapid distribution of iduronate-2-sulfatase out of the central compartment were observed (elimination half-life: 4.3 hours). Iduronate-2-sulfatase exposure in the cerebrospinal fluid was limited, suggesting intravenous administration provided minimal penetration of the blood-brain barrier. Following intrathecal administration, a high maximum observed concentration was immediately noted and elimination half-life ranged between 7.8-10 hours and 5.9-6.7 hours (cisterna magna and lumbar sampling, respectively). Cerebrospinal fluid pharmacokinetic profiles at different doses of iduronate-2-sulfatase were similar and the dose/exposure relationship was proportional. After intrathecal administration, movement of iduronate-2-sulfatase from cerebrospinal fluid to serum was observed (systemic bioavailability was 40-83%). The clear penetration of iduronate-2-sulfatase into the cerebrospinal fluid and the dose response suggest that intrathecal delivery of iduronate-2-sulfatase may be suitable for treating the central nervous system manifestations associated with Hunter syndrome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据