4.6 Article

Second-Hand Cigarette Smoke Impairs Bacterial Phagocytosis in Macrophages by Modulating CFTR Dependent Lipid-Rafts

期刊

PLOS ONE
卷 10, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0121200

关键词

-

资金

  1. Flight Attendant Medical Research Institute's (FAMRI), Young Clinical Scientist Award (YCSA)
  2. other National Institute of Health (NIH) [U54CA141868, R01HL59410-04]

向作者/读者索取更多资源

Introduction First/Second-hand cigarette-smoke (FHS/SHS) exposure weakens immune defenses inducing chronic obstructive pulmonary disease (COPD) but the underlying mechanisms are not fully understood. Hence, we evaluated if SHS induced changes in membrane/lipid-raft (m-/r)-CFTR (cystic fibrosis transmembrane conductance regulator) expression/activity is a potential mechanism for impaired bacterial phagocytosis in COPD. Methods RAW264.7 murine macrophages were exposed to freshly prepared CS-extract (CSE) containing culture media and/or Pseudomonas-aeruginosa-PA01-GFP for phagocytosis (fluorescence-microscopy), bacterial survival (colony-forming-units-CFU), and immunoblotting assays. The CFTR-expression/activity and lipid-rafts were modulated by transienttransfection or inhibitors/inducers. Next, mice were exposed to acute/sub-chronic-SHS or room-air (5-days/3-weeks) and infected with PA01-GFP, followed by quantification of bacterial survival by CFU-assay. Results We investigated the effect of CSE treatment on RAW264.7 cells infected by PA01-GFP and observed that CSE treatment significantly (p<0.01) inhibits PA01-GFP phagocytosis as compared to the controls. We also verified this in murine model, exposed to acute/subchronic-SHS and found significant (p<0.05, p<0.02) increase in bacterial survival in the SHS-exposed lungs as compared to the room-air controls. Next, we examined the effect of impaired CFTR ion-channel-activity on PA01-GFP infection of RAW264.7 cells using CFTR172-inhibitor and found no significant change in phagocytosis. We also similarly evaluated the effect of a CFTR corrector-potentiator compound, VRT-532, and observed no significant rescue of CSE impaired PA01-GFP phagocytosis although it significantly (p < 0.05) decreases CSE induced bacterial survival. Moreover, induction of CFTR expression in macrophages significantly (p<0.03) improves CSE impaired PA01-GFP phagocytosis as compared to the control. Next, we verified the link between m-/r-CFTR expression and phagocytosis using methyl-beta-cyclodextran (CD), as it is known to deplete CFTR from membrane lipid-rafts. We observed that CD treatment significantly (p<0.01) inhibits bacterial phagocytosis in RAW264.7 cells and adding CSE further impairs phagocytosis suggesting synergistic effect on CFTR dependent lipid-rafts. Conclusion Our data suggest that SHS impairs bacterial phagocytosis by modulating CFTR dependent lipid-rafts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据