4.6 Article

CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection

期刊

PLOS ONE
卷 9, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0115987

关键词

-

资金

  1. Chinese National Science Foundation [31170871, 81161160569]
  2. National Science and Technology Major Projects [2012ZX10001-008, 2014ZX10001-001]
  3. French Energy Company Areva
  4. National Institutes of Health [AI106574]
  5. Baylor-UTHouston CFAR [P30AI036211]

向作者/读者索取更多资源

CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4(+) cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据