4.6 Article

Non-Enzymatic Depurination of Nucleic Acids: Factors and Mechanisms

期刊

PLOS ONE
卷 9, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0115950

关键词

-

资金

  1. Fund for Distinguished Young Scholars'' of Shandong province [JQ201204]
  2. Program for Changjiang Scholars and Innovative Research Team in University [IRT1188]
  3. National Youth Qianren Plan

向作者/读者索取更多资源

Depurination has attracted considerable attention since a long time for it is closely related to the damage and repair of nucleic acids. In the present study, depurination using a pool of 30-nt short DNA pieces with various sequences at diverse pH values was analyzed by High Performance Liquid Chromatography (HPLC). Kinetic analysis results showed that non-enzymatic depurination of oligodeoxynucleotides exhibited typical first-order kinetics, and its temperature dependence obeyed Arrhenius' law very well. Our results also clearly showed that the linear relationship between the logarithms of rate constants and pH values had a salient point around pH 2.5. Interestingly and unexpectedly, depurination depended greatly on the DNA sequences. The depurination of poly (dA) was found to be extremely slow, and thymine rich sequences depurinated faster than other sequences. These results could be explained to some extent by the protonation of nucleotide bases. Moreover, two equations were obtained based on our data for predicting the rate of depurination under various conditions. These results provide basic data for gene mutagenesis and nucleic acids metabolism in acidic gastric juice and some acidic organelles, and may also help to rectify some misconceptions about depurination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据