4.6 Article

Fear Extinction as a Model for Synaptic Plasticity in Major Depressive Disorder

期刊

PLOS ONE
卷 9, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0115280

关键词

-

资金

  1. FAZIT Stiftung
  2. Albert Ludwigs University Freiburg

向作者/读者索取更多资源

Background: The neuroplasticity hypothesis of major depressive disorder proposes that a dysfunction of synaptic plasticity represents a basic pathomechanism of the disorder. Animal models of depression indicate enhanced plasticity in a ventral emotional network, comprising the amygdala. Here, we investigated fear extinction learning as a non-invasive probe for amygdala-dependent synaptic plasticity in patients with major depressive disorder and healthy controls. Methods: Differential fear conditioning was measured in 37 inpatients with severe unipolar depression (International Classification of Diseases, 10th revision, criteria) and 40 healthy controls. The eye-blink startle response, a subcortical output signal that is modulated by local synaptic plasticity in the amygdala in fear acquisition and extinction learning, was recorded as the primary outcome parameter. Results: After robust and similar fear acquisition in both groups, patients with major depressive disorder showed significantly enhanced fear extinction learning in comparison to healthy controls, as indicated by startle responses to conditioned stimuli. The strength of extinction learning was positively correlated with the total illness duration. Conclusions: The finding of enhanced fear extinction learning in major depressive disorder is consistent with the concept that the disorder is characterized by enhanced synaptic plasticity in the amygdala and the ventral emotional network. Clinically, the observation emphasizes the potential of successful extinction learning, the basis of exposure therapy, in anxiety-related disorders despite the frequent comorbidity of major depressive disorder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据