4.6 Article

Evaluation of the Impact of the Cancer Therapy Everolimus on the Central Nervous System in Mice

期刊

PLOS ONE
卷 9, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0113533

关键词

-

资金

  1. university of Roue
  2. Inserm
  3. Novartis [071160-001141-05]

向作者/读者索取更多资源

Cancer and treatments may induce cognitive impairments in cancer patients, and the causal link between chemotherapy and cognitive dysfunctions was recently validated in animal models. New cancer targeted therapies have become widely used, and their impact on brain functions and quality of life needs to be explored. We evaluated the impact of everolimus, an anticancer agent targeting the mTOR pathway, on cognitive functions, cerebral metabolism, and hippocampal cell proliferation/vascular density in mice. Adult mice received everolimus daily for 2 weeks, and behavioral tests were performed from 1 week after the last treatment. Everolimus-treated mice displayed a marked reduction in weight gain from the last day of the treatment period. Ex vivo analysis showed altered cytochrome oxidase activity in selective cerebral regions involved in energy balance, food intake, reward, learning and memory modulation, sleep/wake cycle regulation, and arousal. Like chemotherapy, everolimus did not alter emotional reactivity, learning and memory performances, but in contrast to chemotherapy, did not affect behavioral flexibility or reactivity to novelty. In vivo hippocampal neural cell proliferation and vascular density were also unchanged after everolimus treatments. In conclusion, two weeks daily everolimus treatment at the clinical dose did not evoke alteration of cognitive performances evaluated in hippocampal- and prefrontal cortex-dependent tasks that would persist at one to four weeks after the end of the treatment completion. However, acute everolimus treatment caused selective CO modifications without altering the mTOR effector P70S6 kinase in cerebral regions involved in feeding behavior and/or the sleep/wake cycle, at least in part under control of the solitary nucleus and the parasubthalamic region of the hypothalamus. Thus, this area may represent a key target for everolimus-mediating peripheral modifications, which has been previously associated with symptoms such as weight loss and fatigue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据