4.6 Article

Proximal Tubule Epithelial Cell Specific Ablation of the Spermidine/Spermine N1-Acetyltransferase Gene Reduces the Severity of Renal Ischemia/Reperfusion Injury

期刊

PLOS ONE
卷 9, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0110161

关键词

-

资金

  1. National Institutes of Health [CA051085, CA098454]
  2. VA Merit Award
  3. Center on Genetics of Transport and Epithelial Biology at the University of Cincinnati
  4. DCI
  5. US Renal Care Inc.

向作者/读者索取更多资源

Background: Expression and activity of spermidine/spermine N-1-acetyltransferase (SSAT) increases in kidneys subjected to ischemia/reperfusion (I/R) injury, while its ablation reduces the severity of such injuries. These results suggest that increased SSAT levels contribute to organ injury; however, the role of SSAT specifically expressed in proximal tubule epithelial cells, which are the primary targets of I/R injury, in the mediation of renal damage remains unresolved. Methods: Severity of I/R injury in wt and renal proximal tubule specific SSAT-ko mice (PT-SSAT-Cko) subjected to bilateral renal I/R injury was assessed using cellular and molecular biological approaches. Results: Severity of the loss of kidney function and tubular damage are reduced in PT-SSAT-Cko-compared to wt-mice after I/R injury. In addition, animals treated with MDL72527, an inhibitor of polyamine oxidases, had less severe renal damage than their vehicle treated counter-parts. The renal expression of HMGB 1 and Toll like receptors (TLR) 2 and 4 were also reduced in PT-SSAT-Cko-compared to wt mice after I/R injury. Furthermore, infiltration of neutrophils, as well as expression of tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) transcripts were lower in the kidneys of PT-SSAT-Cko compared to wt mice after I/R injury. Finally, the activation of caspase3 was more pronounced in the wt compared to PT-SSAT-Cko animals. Conclusions: Enhanced SSAT expression by proximal tubule epithelial cells leads to tubular damage, and its deficiency reduces the severity of renal I/R injury through reduction of cellular damage and modulation of the innate immune response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据