4.6 Article

The Effects of Urban Warming on Herbivore Abundance and Street Tree Condition

期刊

PLOS ONE
卷 9, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0102996

关键词

-

资金

  1. USDA AFRI [2013-02476]
  2. NCSU Department of Entomology
  3. Keck Center for Behavioral Biology
  4. NSF RAPID [1318655]
  5. United States Geological Survey [G11AC20471, G13AC00405]
  6. Direct For Biological Sciences
  7. Division Of Environmental Biology [1318655] Funding Source: National Science Foundation

向作者/读者索取更多资源

Trees are essential to urban habitats because they provide services that benefit the environment and improve human health. Unfortunately, urban trees often have more herbivorous insect pests than rural trees but the mechanisms and consequences of these infestations are not well documented. Here, we examine how temperature affects the abundance of a scale insect, Melanaspis tenebricosa (Comstock) (Hemiptera: Diaspididae), on one of the most commonly planted street trees in the eastern U. S. Next, we examine how both pest abundance and temperature are associated with water stress, growth, and condition of 26 urban street trees. Although trees in the warmest urban sites grew the most, they were more water stressed and in worse condition than trees in cooler sites. Our analyses indicate that visible declines in tree condition were best explained by scale-insect infestation rather than temperature. To test the broader relevance of these results, we extend our analysis to a database of more than 2700 Raleigh, US street trees. Plotting these trees on a Landsat thermal image of Raleigh, we found that warmer sites had over 70% more trees in poor condition than those in cooler sites. Our results support previous studies linking warmer urban habitats to greater pest abundance and extend this association to show its effect on street tree condition. Our results suggest that street tree condition and ecosystem services may decline as urban expansion and global warming exacerbate the urban heat island effect. Although our non-probability sampling method limits our scope of inference, our results present a gloomy outlook for urban forests and emphasize the need for management tools. Existing urban tree inventories and thermal maps could be used to identify species that would be most suitable for urban conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据