4.6 Article

Alteration of Skin Wound Healing in Keratinocyte-Specific Mediator Complex Subunit 1 Null Mice

期刊

PLOS ONE
卷 9, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0102271

关键词

-

资金

  1. Ministry of Education, Science, Sports and Culture of Japan [19790784, 21791075, 23591644]
  2. Grants-in-Aid for Scientific Research [21791075, 19790784, 23591644] Funding Source: KAKEN

向作者/读者索取更多资源

MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wildtype mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of alpha-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activinfollistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wildtype mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair follicle stem cells to epidermal regeneration after wounding in 6-month-old Med1(epi-/-) mice. This study sheds light on the novel function of MED1 in keratinocytes and suggests a possible new therapeutic approach for skin wound healing and aging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据