4.6 Article

Understanding the Low Photosynthetic Rates of Sun and Shade Coffee Leaves: Bridging the Gap on the Relative Roles of Hydraulic, Diffusive and Biochemical Constraints to Photosynthesis

期刊

PLOS ONE
卷 9, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0095571

关键词

-

资金

  1. Foundation for Research Assistance of the Minas Gerais State, Brazil (Fapemig) [APQ-01138-12]
  2. National Council for Scientific and Technological Development (CNPq) [302605/2010-0, 475780/2012-4]
  3. Plan Nacional (Spain) [AGL2009-07999]
  4. CNPq

向作者/读者索取更多资源

It has long been held that the low photosynthetic rates (A) of coffee leaves are largely associated with diffusive constraints to photosynthesis. However, the relative limitations of the stomata and mesophyll to the overall diffusional constraints to photosynthesis, as well as the coordination of leaf hydraulics with photosynthetic limitations, remain to be fully elucidated in coffee. Whether the low actual A under ambient CO2 concentrations is associated with the kinetic properties of Rubisco and high (photo) respiration rates also remains elusive. Here, we provide a holistic analysis to understand the causes associated with low A by measuring a variety of key anatomical/hydraulic and photosynthetic traits in sun- and shade-grown coffee plants. We demonstrate that leaf hydraulic architecture imposes a major constraint on the maximisation of the photosynthetic gas exchange of coffee leaves. Regardless of the light treatments, A was mainly limited by stomatal factors followed by similar limitations associated with the mesophyll and biochemical constraints. No evidence of an inefficient Rubisco was found; rather, we propose that coffee Rubisco is well tuned for operating at low chloroplastic CO2 concentrations. Finally, we contend that large diffusive resistance should lead to large CO2 drawdown from the intercellular airspaces to the sites of carboxylation, thus favouring the occurrence of relatively high photorespiration rates, which ultimately leads to further limitations to A.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据