4.6 Article

Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles

期刊

PLOS ONE
卷 9, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0085981

关键词

-

资金

  1. National Science Foundation [0936768]
  2. Western Michigan University
  3. WMU Office of the Vice President for Research Faculty Research and Creative Activities Award [W2012-019]
  4. WMU's Lee Honors College
  5. Department of Education GAANN Program Award [P200A090217]
  6. AGEP
  7. Direct For Mathematical & Physical Scien
  8. Division Of Materials Research [0963678] Funding Source: National Science Foundation

向作者/读者索取更多资源

Investigating the interactions between nanoscale materials and microorganisms is crucial to provide a comprehensive, proactive understanding of nanomaterial toxicity and explore the potential for novel applications. It is well known that nanomaterial behavior is governed by the size and composition of the particles, though the effects of small differences in size toward biological cells have not been well investigated. Palladium nanoparticles (Pd NPs) have gained significant interest as catalysts for important carbon-carbon and carbon-heteroatom reactions and are increasingly used in the chemical industry, however, few other applications of Pd NPs have been investigated. In the present study, we examined the antimicrobial capacity of Pd NPs, which provides both an indication of their usefulness as target antimicrobial compounds, as well as their potency as potential environmental pollutants. We synthesized Pd NPs of three different well-constrained sizes, 2.0 +/- 0.1 nm, 2.5 +/- 0.2 nm and 3.1 +/- 0.2 nm. We examined the inhibitory effects of the Pd NPs and Pd2+ ions toward gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) bacterial cultures throughout a 24 hour period. Inhibitory growth effects of six concentrations of Pd NPs and Pd2+ ions (2.5 x 10(-4), 10(-5), 10(-6), 10(-7), 10(-8), and 10(-9) M) were examined. Our results indicate that Pd NPs are generally much more inhibitory toward S. aureus than toward E. coli, though all sizes are toxic at >= 10(-5) M to both organisms. We observed a significant difference in size-dependence of antimicrobial activity, which differed based on the microorganism tested. Our work shows that Pd NPs are highly antimicrobial, and that fine-scale (<1 nm) differences in size can alter antimicrobial activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据