4.6 Article

Either Non-Homologous Ends Joining or Homologous Recombination Is Required to Repair Double-Strand Breaks in the Genome of Macrophage-Internalized Mycobacterium tuberculosis

期刊

PLOS ONE
卷 9, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0092799

关键词

-

资金

  1. European Regional Development Fund [POIG.01.01.02-10-107/09]

向作者/读者索取更多资源

The intracellular pathogen Mycobacterium tuberculosis (Mtb) is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single-or double-strand breaks (DSBs). These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR) and non-homologous ends joining (NHEJ), in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (Delta recA), NHEJ [Delta(ku,ligD)], or both DSB repair systems [Delta(ku,ligD,recA)]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Delta(ku,ligD,recA) mutant strain lacking both systems to survive intracellularly. Complementation of the Delta(ku,ligD,recA) mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据