4.4 Article

Fabrication and Characterization of Polycaprolactone Micro and Nanofibers for Vascular Tissue Replacement

期刊

SCIENCE OF ADVANCED MATERIALS
卷 7, 期 4, 页码 599-605

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/sam.2015.2255

关键词

PCL; Electrospinning; DSC; FTIR; Mechanical Behavior; Cell Culture

资金

  1. Deanship of Scientific Research at king Saud University [RG-1435-052]

向作者/读者索取更多资源

In the present study, 2D micro- and nanofibrous polycaprolactone (PCL) scaffolds were fabricated using the electrospinning technique. The thermal, microstructure and mechanical properties of the fabricated micro- and nanofibrous scaffolds were assessed using structural/phase, elemental, morphological characterizations and micro-universal testing machines. Finally, scaffolds were seeded with fibroblasts to evaluate biological properties and to demonstrate tissue growth. In addition, the toxicity of PCL scaffold on hFFs cells was explored with Live/Dead staining. The morphological characterization of PCL scaffolds showed highly aligned micro- and nanofibrous morphology with porosity reaches to 66% and uniform diameter ranges from 200 nm to 1.4 mu m depending on PCL concentration, solvent and applied voltage. The FTIR results indicated that the micro/nanofibers are almost the same for bulk PCL. The DSC results confirmed the semi-crystalline nature of PCL with crystallinity and temperature melting of microfibrous scaffold higher than that of the nanofibrous ones. The Thermogravimetric analysis showed that the PCL micro- and nanofibers have a single stage thermal degradation with higher decomposition temperature of microfibrous PCL scaffolds compared to the nanofibrous one. The mechanical test results indicated that the microfibrous scaffolds have an acceptable mechanical behavior for cell culture technology. Finally, the cell culture results showed that the cells are not only attached to the scaffold but also integrated with it; the cells are imbedded into the PCL scaffold, which is the ultimate goal of using these kinds of materials for tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据