4.6 Article

Efficiency of Lift Production in Flapping and Gliding Flight of Swifts

期刊

PLOS ONE
卷 9, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0090170

关键词

-

资金

  1. Swedish Research Council
  2. Knut and Alice Wallenberg Foundation
  3. Centre for Animal Movement Research (CAnMove)
  4. Swedish Research Council [349-2007-8690]
  5. Lund University
  6. EPSRC [EP/H004025/1]
  7. BBSRC [BB/J001244/1]
  8. EPSRC
  9. BBSRC [BB/J000523/1, BB/J001244/2, BB/J001244/1] Funding Source: UKRI
  10. EPSRC [EP/H004025/2, EP/H004025/1] Funding Source: UKRI
  11. Biotechnology and Biological Sciences Research Council [BB/J000523/1, BB/J001244/2, BB/J001244/1] Funding Source: researchfish
  12. Engineering and Physical Sciences Research Council [EP/H004025/1, EP/H004025/2] Funding Source: researchfish

向作者/读者索取更多资源

Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据