4.6 Article

The Interaction of the Atm Genotype with Inflammation and Oxidative Stress

期刊

PLOS ONE
卷 9, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0085863

关键词

-

资金

  1. A-T Children's Project
  2. National Key Basic Research Program of China [2013CB530900]
  3. NIH [NS20591, NS71022]
  4. Rutgers University
  5. Hong Kong University of Science and Technology

向作者/读者索取更多资源

In ataxia-telangiectasia (A-T) the death of neurons is associated with the loss of neuronal cell cycle control. In most Atm(-/-) mouse models, however, these cell cycle anomalies are present but the phenotype of neuronal cell loss found in humans is not. Mouse Atm(-/-) neurons re-enter a cell cycle and replicate their DNA, but they do not die - even months after initiating the cycle. In the current study, we explore whether systemic inflammation or hypoxia-induced oxidative stress can serve as second stressors that can promote cell death in ATM-deficient neurons. We find that after either immune or hypoxic challenge, the levels of cell cycle proteins - PCNA, cyclin A and cyclin B - are significantly elevated in cerebellar Purkinje cells. Both the number of cells that express cell cycle proteins as well as the intensity of the expression levels in each cell is increased in the stressed animals. The cell cycle-positive neurons also increasingly express cell death markers such as activated caspase-3, gamma-H2AX and TUNEL staining. Interestingly, nuclear HDAC4 localization is also enhanced in Atm(-/-) Purkinje neurons after the immune challenge suggesting that both genetic and epigenetic changes in Atm(-/-) mice respond to environmental challenges. Our findings support the hypothesis that multiple insults are needed to drive even genetically vulnerable neurons to die a cell cycle-related cell death and point to either inflammation or oxidative stressors as potential contributors to the A-T disease process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据