4.6 Article

Nrf1 and Nrf2 Transcription Factors Regulate Androgen Receptor Transactivation in Prostate Cancer Cells

期刊

PLOS ONE
卷 9, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0087204

关键词

-

资金

  1. Department of Defense [PC080811, PC081598]
  2. National Institute of Health [T32-CA093240]
  3. Louisiana Cancer Research Consortium

向作者/读者索取更多资源

Despite androgen deprivation therapy (ADT), persistent androgen receptor (AR) signaling enables outgrowth of castration resistant prostate cancer (CRPC). In prostate cancer (PCa) cells, ADT may enhance AR activity through induction of oxidative stress. Herein, we investigated the roles of Nrf1 and Nrf2, transcription factors that regulate antioxidant gene expression, on hormone-mediated AR transactivation using a syngeneic in vitro model of androgen dependent (LNCaP) and castration resistant (C4-2B) PCa cells. Dihydrotestosterone (DHT) stimulated transactivation of the androgen response element (ARE) was significantly greater in C4-2B cells than in LNCaP cells. DHT-induced AR transactivation was coupled with higher nuclear translocation of p65-Nrf1 in C4-2B cells, as compared to LNCaP cells. Conversely, DHT stimulation suppressed total Nrf2 levels in C4-2B cells but elevated total Nrf2 levels in LNCaP cells. Interestingly, siRNA mediated silencing of Nrf1 attenuated AR transactivation while p65-Nrf1 overexpression enhanced AR transactivation. Subsequent studies showed that Nrf1 physically interacts with AR and enhances AR's DNA-binding activity, suggesting that the p65-Nrf1 isoform is a potential AR coactivator. In contrast, Nrf2 suppressed AR-mediated transactivation by stimulating the nuclear accumulation of the p120-Nrf1 which suppressed AR transactivation. Quantitative RT-PCR studies further validated the inductive effects of p65-Nrf1 isoform on the androgen regulated genes, PSA and TMPRSS2. Therefore, our findings implicate differential roles of Nrf1 and Nrf2 in regulating AR transactivation in PCa cells. Our findings also indicate that the DHT-stimulated increase in p65-Nrf1 and the simultaneous suppression of both Nrf2 and p120-Nrf1 ultimately facilitates AR transactivation in CRPC cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据