4.6 Article

Down-Regulation of Gli Transcription Factor Leads to the Inhibition of Migration and Invasion of Ovarian Cancer Cells via Integrin β4-Mediated FAK Signaling

期刊

PLOS ONE
卷 9, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0088386

关键词

-

资金

  1. China National Basic Research Program [2010CB535001]
  2. National Natural Science Foundation of China [81060095, 31171359]
  3. Specialized Research Fund for the Doctoral Program of Higher Education [2010360111007]
  4. NIH [P30 CA054174]

向作者/读者索取更多资源

Background: Recent evidence suggests that aberrant activation of Hedgehog (Hh) signaling by Gli transcription factors is characteristic of a variety of aggressive human carcinomas including ovarian cancer. Therefore, chemotherapeutic agents that inhibit activation of Gli transcription factors have emerged as promising novel therapeutic drugs for ovarian cancer. Results: In this study, we show that activation of Hh signaling promoted cellular migration and invasion, whereas blockade of Hh signaling with GANT61 suppressed cellular migration and invasion in ovarian cancer cells. After treatment with GANT61, cDNA microarray analyses revealed changes in many genes such as Integrin beta 4 subunit (ITGB4), focal adhesion kinase (FAK), etc. Furthermore, ITGB4 expression was up-regulated by Sonic Hedgehog (Shh) ligand and down-regulated by Hh signaling inhibitor. The Shh-mediated ovarian cell migration and invasion was blocked by neutralizing antibodies to ITGB4. In addition, phosphorylations of FAK were increased by Shh and decreased by Hh signaling inhibitor. Inhibition of Gli1 expression using siRNA mimicked the effects of GANT61 treatment, supporting the specificity of GANT61. Further investigations showed that activation of FAK was required for Shh-mediated cell migration and invasion. Finally, we found that down-regulation of Gli reduced the expression of ITGB4 and the phosphorylated FAK, resulting in the inhibition of tumor growth in vivo. Conclusions: The Hh signaling pathway induces cell migration and invasion through ITGB4-mediated activation of FAK in ovarian cancer. Our findings suggest that the diminishment of crosstalk between phosphorylated FAK and ITGB4 due to the down-regulation of Gli family transcription factors might play a pivotal role for inhibiting ovarian cancer progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据