4.7 Article

Helium segregation to screw and edge dislocations in α-iron and their yield strength

期刊

ACTA MATERIALIA
卷 84, 期 -, 页码 208-214

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2014.10.066

关键词

Helium; Segregation; Dislocation mobility; Modeling; Monte Carlo

资金

  1. Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center - US Department of Energy at Los Alamos National Laboratory [2008LANL1026]
  2. National Nuclear Security Administration of the US DOE [DE-AC52-06NA25396]

向作者/读者索取更多资源

Helium (He) presents one of the mayor concerns in the nuclear materials community as it modifies the mechanical properties of the system withstanding fast neutron spectra, promoting swelling and embrittlement. Ferritic/martensitic steels are one of the main candidates as structural materials for future nuclear applications. Experimentally the bubble distribution is observed to vary depending on irradiation conditions (temperature, dose rate and total dose). However, traditional atomistic models decouple the role of temperature in the mechanical properties from its effect on the bubble distribution. In this paper we study substitutional He segregation to screw and edge dislocations in alpha-Fe at different temperatures. We use an object kinetic Monte Carlo methodology to obtain general trends in bubble distribution and a canonical Monte Carlo algorithm, with full atomistic fidelity, to find the He distribution at the dislocation cores. Molecular dynamics has subsequently been applied to study the yield strength, which increases significantly in the presence of He, more remarkably for the edge dislocation. The total stress fits a Kocks relation. However, if the lattice resistance is subtracted, the relation between the critical shear stress and the temperature is non-monotonic for the screw character. To reproduce this effect, we propose to modify the Kocks relation, adding a second-order term in temperature that extends the range of applicability of the model. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据