4.6 Review

The Role of Epigenetic Modification in Tumorigenesis and Progression of Pituitary Adenomas: A Systematic Review of the Literature

期刊

PLOS ONE
卷 8, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0082619

关键词

-

向作者/读者索取更多资源

Background: Pituitary adenomas (PAs) are commonly occurring neoplasms with diverse endocrine and neurological effects. Although somatic gene mutations are uncommon in sporadic PAs, recent studies lend support to epigenetic modification as a potential cause of tumorigenesis and tumor progression. Methods: A systematic literature review of the PubMed and Google Scholar databases was conducted to identify abstracts (n=1,082) pertaining to key targets and mechanisms implicated in epigenetic dysregulation of PAs published between 1993-2013. Data regarding histopathological subtype, target genes, mode of epigenetic modification, and clinical correlation were recorded and analyzed. Results: Of the 47 that studies met inclusion criteria and focused on epigenomic assessment of PAs, only 2 were genome-scale analyses. Current evidence supports epigenetic alteration in at least 24 PA genes, which were categorized into four groups based on function and epigenetic alteration: 1) Sixteen tumor suppressor genes silenced via DNA methylation; 2) Two oncogenes overexpressed via histone acetylation and hypomethylation; 3) Three imprinted genes with selective allelic silencing; and 4) One epigenome writer inducing abnormal genome-scale activity and 5) Two transcription regulators indirectly modifying the genome. Of these, 5 genes (CDKN2A, GADD45y, FGFR2, caspase-8, and PTAG) showed particular susceptibility to epigenetic modification, with abnormal DNA methylation in >50% of PA samples. Several genes displayed correlations between epigenetic modification and clinically relevant parameters, including invasiveness (CDKN2A; DAPK; Rb1), sex (MAGE-A3), tumor size (GNAS1), and histopathological subtype (CDKN2A; MEG3; p27; RASSF1A; Rb1). Conclusions: Epigenetic modification of selected PA genes may play a key role in tumorigenesis and progression, which may translate into important diagnostic and therapeutic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据