4.6 Article

The Suppression of WRKY44 by GIGANTEA-miR172 Pathway Is Involved in Drought Response of Arabidopsis thaliana

期刊

PLOS ONE
卷 8, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0073541

关键词

-

资金

  1. National Natural Science Foundation of China [30900782]
  2. Ministry of Agriculture of China [2008ZX08009-001-008]
  3. Natural Science Foundation of Shanghai [12ZR1402300square]
  4. Foundation of Chinese Post-doctor [20080440580]

向作者/读者索取更多资源

Water availability is an important environmental factor that controls flowering time. Many plants accelerate flowering under drought conditions, a phenomenon called drought escape. Four pathways are involved in controlling flowering time, but which ones participate in drought escape is not yet known. In this study, plants with loss-of-function mutations of GIGANTEA (GI) and CONSTANS (CO) exhibited abnormal drought-escape phenotypes. The peak mRNA levels of GI and FKF1 (Flavin-binding Kelch domain F box protein 1) and the mRNA levels of CO and FT (Flowering locus T) changed under drought stress. The microRNA factor miRNA172E was up-regulated by drought stress, and its up-regulation was dependent on GI, while other miRNA172s were not. Water-loss analyses indicated that gi mutants were more sensitive while miRNA172 over-expressing (miRNA172-OX) plants were less so to drought stress than wild-type plants. Digital gene expression and real-time PCR analyses showed that WRKY44 was down-regulated by GI and miRNA172. The WRKY44 protein could interact with TOE1 (a target of miRNA172) in a yeast two-hybrid system. We proposed that GI-miRNA172-WRKY44 may regulate drought escape and drought tolerance by affecting sugar signaling in Arabidopsis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据