4.6 Article

Biological Experimental Observations of an Unnoticed Chaos as Simulated by the Hindmarsh-Rose Model

期刊

PLOS ONE
卷 8, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0081759

关键词

-

资金

  1. National Natural Science Foundation of China [11072135, 10772101]
  2. Fundamental Research Funds for Central Universities of Tongji University [1330219127]

向作者/读者索取更多资源

An unnoticed chaotic firing pattern, lying between period-1 and period-2 firing patterns, has received little attention over the past 20 years since it was first simulated in the Hindmarsh-Rose (HR) model. In the present study, the rat sciatic nerve model of chronic constriction injury (CCI) was used as an experimental neural pacemaker to investigate the transition regularities of spontaneous firing patterns. Chaotic firing lying between period-1 and period-2 firings was observed located in four bifurcation scenarios in different, isolated neural pacemakers. These bifurcation scenarios were induced by decreasing extracellular calcium concentrations. The behaviors after period-2 firing pattern in the four scenarios were period-doubling bifurcation not to chaos, period-doubling bifurcation to chaos, period-adding sequences with chaotic firings, and period-adding sequences with stochastic firings. The deterministic structure of the chaotic firing pattern was identified by the first return map of interspike intervals and a short-term prediction using nonlinear prediction. The experimental observations closely match those simulated in a two-dimensional parameter space using the HR model, providing strong evidences of the existence of chaotic firing lying between period-1 and period-2 firing patterns in the actual nervous system. The results also present relationships in the parameter space between this chaotic firing and other firing patterns, such as the chaotic firings that appear after period-2 firing pattern located within the well-known comb-shaped region, periodic firing patterns and stochastic firing patterns, as predicted by the HR model. We hope that this study can focus attention on and help to further the understanding of the unnoticed chaotic neural firing pattern.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据