4.6 Article

Transcriptome Sequencing and Analysis of the Fast Growing Shoots of Moso Bamboo (Phyllostachys edulis)

期刊

PLOS ONE
卷 8, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0078944

关键词

-

资金

  1. State Forestry Administration '948' project of China [2012-4-49]
  2. National High Technology Research and Development Program of China Moso Bamboo Functional Genomics Research [2013AA102607-4]

向作者/读者索取更多资源

Background: The moso bamboo, a large woody bamboo with the highest ecological, economic, and cultural value of all bamboos, has one of the highest growth speeds in the world. Genetic research into moso bamboo has been scarce, partly because of the lack of previous genomic resources. In the present study, for the first time, we performed de novo transcriptome sequencing and mapped to the moso bamboo genomic resources (reference genome and genes) to produce a comprehensive dataset for the fast growing shoots of moso bamboo. Results: The fast growing shoots mixed with six different heights and culms after leaf expansion of moso bamboo transcriptome were sequenced using the Illumina HiSeq (TM) 2000 sequencing platform, respectively. More than 80 million reads including 65,045,670 and 68,431,884 clean reads were produced in the two libraries. More than 81% of the reads were matched to the reference genome, and nearly 50% of the reads were matched to the reference genes. The genes with log 2 ratio > 2 or < -2 (P < 0.001) were characterized as the most differentially expressed genes. 6,076 up-regulated and 4,613 down-regulated genes were classified into functional categories. Candidate genes which mainly involved transcript factors, plant hormones, cell cycle regulation, cell wall metabolism and cell morphogenesis genes were further analyzed and they may form a network that regulates the fast growth of moso bamboo shoots. Conclusion: Firstly, our data provides the most comprehensive transcriptomic resource for moso bamboo to date. Candidate genes have been identified and they are potentially involved in the growth and development of moso bamboo. The results give a better insight into the mechanisms of moso bamboo shoots rapid growth and provide gene resources for improving plant growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据