4.6 Article

The Impact of Microbial Biotransformation of Catechin in Enhancing the Allelopathic Effects of Rhododendron formosanum

期刊

PLOS ONE
卷 8, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0085162

关键词

-

资金

  1. National Science Council of Taiwan [NSC101-2811-B-039-013, NSC102-2811-B-039-005, NSC101-2621-B-039-001, NSC102-2313-B-039-001]

向作者/读者索取更多资源

Rhododendron formosanum is distributed widely in the central mountains in Taiwan and the major allelopathic compound in the leaves has been identified as (-)-catechin, which is also a major allelochemical of an invasive spotted knapweed in North America. Soil microorganisms play key roles in ecosystems and influence various important processes, including allelopathy. However, no microorganism has been identified as an allelochemical mediator. This study focused on the role of microorganisms in the allelopathic effects of R. formosanum. The microorganism population in the rhizosphere of R. formosanum was investigated and genetic analysis revealed that the predominant genera of microorganisms in the rhizosphere of R. formosanum were Pseudomonas, Herbaspirillum, and Burkholderia. The dominant genera Pseudomonas utilized (-)-catechin as the carbon source and catalyzed the conversion of (-)-catechin into protocatechuic acid in vitro. The concentrations of allelochemicals in the soil were quantified by liquid chromatography-electrospray ionization/tandem mass spectrometry. The concentration of (-)-catechin in the soil increased significantly during the extreme rainfall in the summer season and suppressed total bacterial populations. Protocatechuic acid accumulation was observed while total bacterial populations increased abundantly in both laboratory and field studies. Allelopathic interactions were tested by evaluating the effects of different allelochemicals on the seed germination, radicle growth, and photosynthesis system II of lettuce. Protocatechuic acid exhibited higher phytotoxicity than (-)-catechin did and the effect of (-)-catechin on the inhibition of seed germination was enhanced by combining it with protocatechuic acid at a low concentration. This study revealed the significance of the allelopathic interactions between R. formosanum and microorganisms in the rhizosphere. These findings demonstrate that knowledge regarding the precise biotransformation process of (-)-catechin by microorganisms in the environment is necessary to increase our understanding of allelopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据