4.6 Article

A Species Flock Driven by Predation? Secondary Metabolites Support Diversification of Slugs in Antarctica

期刊

PLOS ONE
卷 8, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0080277

关键词

-

资金

  1. US National Science Foundation Office of Polar Programs Antarctic Organisms and Ecosystems Program [ANT-1043749, OPP-0442857, ANT-0838776]
  2. Antarctic Science Bursary
  3. Australian Museum
  4. Scripps Institution of Oceanography
  5. University of South Florida
  6. Directorate For Geosciences
  7. Office of Polar Programs (OPP) [1043749] Funding Source: National Science Foundation

向作者/读者索取更多资源

Antarctica's rich marine animal biodiversity has been substantially influenced by a complex glacial history, but it is unclear why some taxa responded with diversification while others did not. Despite being considered a single endemic sea slug species in the Southern Ocean, mitochondrial DNA sequencing of Doris kerguelenensis (Bergh, 1884) revealed a multitude of highly divergent lineages. But because of the uniparental inheritance of mitochondria, it was unclear whether those lineages represented a radiation of cryptic species or simply stochastic sorting patterns of populations that rarely reach equilibrium. Here we demonstrate that the mitochondrial groups in D. kerguelenensis also correlate with nuclear DNA. Additionally, by extracting secondary metabolites from the same individuals we sequenced, we were also able to directly link the secondary metabolome to a mitochondrial lineage. These metabolites are not derived from the diet, but instead are synthesized de novo and implicated in an anti-predatory role. The strong linkage between these metabolites and the mitochondrial lineages strongly suggests that these lineages represent cryptic species in an adaptive radiation. Over millions of years, episodic glacial cycles reduced the distribution of a formerly widespread slug into a series of small vicariant refuges, vulnerable to genetic drift and predation pressure. The recognition of this marine invertebrate species flock implicates a strongly synergistic role for selection and allopatry driving speciation in this system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据