4.6 Article

Replication-Independent Endogenous DNA Double-Strand Breaks in Saccharomyces cerevisiae Model

期刊

PLOS ONE
卷 8, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0072706

关键词

-

资金

  1. National Science and Technology Development Agency (NSTDA), Thailand
  2. Four Seasons Hotel Bangkok's 4th Cancer Care charity fun run
  3. Chulalongkorn University under the office of the Higher Education Commission
  4. Thai Red Cross Society
  5. Chulalongkorn University

向作者/读者索取更多资源

Without exposure to any DNA-damaging agents, non-dividing eukaryotic cells carry endogenous DNA double-strand breaks (EDSBs), or Replication-Independent (RIND)-EDSBs. In human cells, RIND-EDSBs are enriched in the methylated heterochromatic areas of the genome and are repaired by an ATM-dependent non-homologous end-joining pathway (NHEJ). Here, we showed that Saccharomyces cerevisiae similarly possess RIND-EDSBs. Various levels of EDSBs were detected during different phases of the cell cycle, including G0. Using a collection of mutant yeast strains, we investigated various DNA metabolic and DNA repair pathways that might be involved in the maintenance of RIND-EDSB levels. We found that the RIND-EDSB levels increased significantly in yeast strains lacking proteins involved in NHEJ DNA repair and in suppression of heterochromatin formation. RIND-EDSB levels were also upregulated when genes encoding histone deacetylase, endonucleases, topoisomerase, and DNA repair regulators were deleted. In contrast, RIND-EDSB levels were downregulated in the mutants that lack chromatin-condensing proteins, such as the high-mobility group box proteins, and Sir2. Likewise, RIND-EDSB levels were also decreased in human cells lacking HMGB1. Therefore, we conclude that the genomic levels of RIND-EDSBs are evolutionally conserved, dynamically regulated, and may be influenced by genome topology, chromatin structure, and the efficiency of DNA repair systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据