4.6 Article

The Antihelmintic Drug Pyrvinium Pamoate Targets Aggressive Breast Cancer

期刊

PLOS ONE
卷 8, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0071508

关键词

-

资金

  1. National Institutes of Health [R01CA138239-01]
  2. State of Texas
  3. University of Texas Health Sciences Center [KL2 RR024149]
  4. NCI GI Spore [P50 CA 95103]
  5. NIGMS [R01 GM081635-05]
  6. Morgan Welch Inflammatory Breast Cancer Research Program and Clinic

向作者/读者索取更多资源

WNT signaling plays a key role in the self-renewal of tumor initiation cells (TICs). In this study, we used pyrvinium pamoate (PP), an FDA-approved antihelmintic drug that inhibits WNT signaling, to test whether pharmacologic inhibition of WNT signaling can specifically target TICs of aggressive breast cancer cells. SUM-149, an inflammatory breast cancer cell line, and SUM-159, a metaplastic basal-type breast cancer cell line, were used in these studies. We found that PP inhibited primary and secondary mammosphere formation of cancer cells at nanomolar concentrations, at least 10 times less than the dose needed to have a toxic effect on cancer cells. A comparable mammosphere formation IC50 dose to that observed in cancer cell lines was obtained using malignant pleural effusion samples from patients with IBC. A decrease in activity of the TIC surrogate aldehyde dehydrogenase was observed in PP-treated cells, and inhibition of WNT signaling by PP was associated with down-regulation of a panel of markers associated with epithelial-mesenchymal transition. In vivo, intratumoral injection was associated with tumor necrosis, and intraperitoneal injection into mice with tumor xenografts caused significant tumor growth delay and a trend toward decreased lung metastasis. In in vitro mammosphere-based and monolayer-based clonogenic assays, we found that PP radiosensitized cells in monolayer culture but not mammosphere culture. These findings suggest WNT signaling inhibition may be a feasible strategy for targeting aggressive breast cancer. Investigation and modification of the bioavailability and toxicity profile of systemic PP are warranted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据