4.6 Article

Genomic Profiling Reveals That Transient Adipogenic Activation Is a Hallmark of Mouse Models of Skeletal Muscle Regeneration

期刊

PLOS ONE
卷 8, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0071084

关键词

-

资金

  1. Novartis Pharma AG

向作者/读者索取更多资源

The marbling of skeletal muscle by ectopic adipose tissue is a hallmark of many muscle diseases, including sarcopenia and muscular dystrophies, and generally associates with impaired muscle regeneration. Although the etiology and the molecular mechanisms of ectopic adipogenesis are poorly understood, fatty regeneration can be modeled in mice using glycerol-induced muscle damage. Using comprehensive molecular and histological profiling, we compared glycerol-induced fatty regeneration to the classical cardiotoxin (CTX)-induced regeneration model previously believed to lack an adipogenic response in muscle. Surprisingly, ectopic adipogenesis was detected in both models, but was stronger and more persistent in response to glycerol. Importantly, extensive differential transcriptomic profiling demonstrated that glycerol induces a stronger inflammatory response and promotes adipogenic regulatory networks while reducing fatty acid beta-oxidation. Altogether, these results provide a comprehensive mapping of gene expression changes during the time course of two muscle regeneration models, and strongly suggest that adipogenic commitment is a hallmark of muscle regeneration, which can lead to ectopic adipocyte accumulation in response to specific physio-pathological challenges.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据