4.6 Article

The Design and In Vivo Evaluation of Engineered I-OnuI-Based Enzymes for HEG Gene Drive

期刊

PLOS ONE
卷 8, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0074254

关键词

-

资金

  1. Foundation of the National Institutes of Health
  2. Bill and Melinda Gates Foundation
  3. National Institutes of Health [RL1 CA133833, R01 GM49857]

向作者/读者索取更多资源

The homing endonuclease gene (HEG) drive system, a promising genetic approach for controlling arthropod populations, utilises engineered nucleases to spread deleterious mutations that inactivate individual genes throughout a target population. Previous work with a naturally occurring LAGLIDADG homing endonuclease (I-SceI) demonstrated its feasibility in both Drosophila and Anopheles. Here we report on the next stage of this strategy: the redesign of HEGs with customized specificity in order to drive HEG-induced 'homing' in vivo via break-induced homologous recombination. Variants targeting a sequence within the Anopheles AGAP004734 gene were created from the recently characterized I-OnuI endonuclease, and tested for cleavage activity and frequency of homing using a model Drosophila HEG drive system. We observed cleavage and homing at an integrated reporter for all endonuclease variants tested, demonstrating for the first time that engineered HEGs can cleave their target site in insect germline cells, promoting targeted mutagenesis and homing. However, in comparison to our previously reported work with I-SceI, the engineered I-OnuI variants mediated homing with a reduced frequency, suggesting that site-specific cleavage activity is insufficient by itself to ensure efficient homing. Taken together, our experiments take a further step towards the development of a viable HEG-based population control strategy for insects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据