4.6 Article

Highly Precise Measurement of HIV DNA by Droplet Digital PCR

期刊

PLOS ONE
卷 8, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0055943

关键词

-

资金

  1. Department of Veterans Affairs
  2. James Pendleton Charitable Trust
  3. National Institutes of Health (NIH) [AI69432, AI043638, MH62512, MH083552, AI077304, AI047745, AI74621, GM093939, AI080353, AI306214, AI096113]
  4. Swiss National Science Foundation [PBZHP3-125533]
  5. Gustav and Ruth Jacob Foundation (Switzerland)
  6. National Institute of General Medical Sciences [GM093939]
  7. Swiss National Science Foundation (SNF) [PBZHP3-125533] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Deoxyribonucleic acid (DNA) of the human immunodeficiency virus (HIV) provides the most sensitive measurement of residual infection in patients on effective combination antiretroviral therapy (cART). Droplet digital PCR (ddPCR) has recently been shown to provide highly accurate quantification of DNA copy number, but its application to quantification of HIV DNA, or other equally rare targets, has not been reported. This paper demonstrates and analyzes the application of ddPCR to measure the frequency of total HIV DNA (pol copies per million cells), and episomal 2-LTR (long terminal repeat) circles in cells isolated from infected patients. Analysis of over 300 clinical samples, including over 150 clinical samples assayed in triplicate by ddPCR and by real-time PCR (qPCR), demonstrates a significant increase in precision, with an average 5-fold decrease in the coefficient of variation of pol copy numbers and a >20-fold accuracy improvement for 2-LTR circles. Additional benefits of the ddPCR assay over qPCR include absolute quantification without reliance on an external standard and relative insensitivity to mismatches in primer and probe sequences. These features make digital PCR an attractive alternative for measurement of HIV DNA in clinical specimens. The improved sensitivity and precision of measurement of these rare events should facilitate measurements to characterize the latent HIV reservoir and interventions to eradicate it.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据