4.6 Article

Rapamycin Upregulates Autophagy by Inhibiting the mTOR-ULK1 Pathway, Resulting in Reduced Podocyte Injury

期刊

PLOS ONE
卷 8, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0063799

关键词

-

资金

  1. Programs of the National Natural Science Foundation of China [30800521, 81102673]
  2. National Basic Research Program of China [2011CB944000, 2012CB530800]

向作者/读者索取更多资源

The podocyte functions as a glomerular filtration barrier. Autophagy of postmitotic cells is an important protective mechanism that is essential for maintaining the homeostasis of podocytes. Exploring an in vivo rat model of passive Heymann nephritis and an in vitro model of puromycin amino nucleotide (PAN)-cultured podocytes, we examined the specific mechanisms underlying changing autophagy levels and podocyte injury. In the passive Heymann nephritis model rats, the mammalian target-of-rapamycin (mTOR) levels were upregulated in injured podocytes while autophagy was inhibited. In PAN-treated podocytes, mTOR lowered the level of autophagy through the mTOR-ULK1 pathway resulting in damaged podocytes. Rapamycin treatment of these cells reduced podocyte injury by raising the levels of autophagy. These in vivo and in vitro experiments demonstrate that podocyte injury is associated with changes in autophagy levels, and that rapamycin can reduce podocyte injury by increasing autophagy levels via inhibition of the mTOR-ULK1 pathway. These results provide an important theoretical basis for future treatment of diseases involving podocyte injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据