4.6 Article

Stress-Derived Corticotropin Releasing Factor Breaches Epithelial Endotoxin Tolerance

期刊

PLOS ONE
卷 8, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0065760

关键词

-

资金

  1. 973 Program of China [2011CB512006]
  2. Natural Science Foundation of SZU [000004]
  3. National Natural Science Foundation of China [81271950, 31101280, 31070799]
  4. Shenzhen Municipal Research Key Laboratory Programme [SW201110010]

向作者/读者索取更多资源

Background and aims: Loss of the endotoxin tolerance of intestinal epithelium contributes to a number of intestinal diseases. The etiology is not clear. Psychological stress is proposed to compromise the intestinal barrier function. The present study aims to elucidate the role of the stress-derived corticotropin releasing factor (CRF) in breaching the established intestinal epithelial endotoxin tolerance. Methods: Epithelial cells of HT-29, T84 and MDCK were exposed to lipopolysaccharide to induce the endotoxin tolerance; the cells were then stimulated with CRF. The epithelial barrier function was determined using as indicators of the endotoxin tolerant status. A water-avoid stress mouse model was employed to test the role of CRF in breaching the established endotoxin tolerance in the intestine. Results: The established endotoxin tolerance in the epithelial cell monolayers was broken down by a sequent exposure to CRF and LPS manifesting a marked drop of the transepithelial resistance (TER) and an increase in the permeability to a macromolecular tracer, horseradish peroxidase (HRP). The exposure to CRF also increased the expression of Cldn2 in the epithelial cells, which could be mimicked by over expression of TLR4 in epithelial cells. Over expression of Cldn2 resulted in low TER in epithelial monolayers and high permeability to HRP. After treating mice with the 10-day chronic stress, the intestinal epithelial barrier function was markedly compromised, which could be prevented by blocking either CRF, or TLR4, or Cldn2. Conclusions: Psychological stress-derived CRF can breach the established endotoxin tolerance in the intestinal mucosa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据