4.6 Article

Thyroid Hormone Reverses Aging-Induced Myocardial Fatty Acid Oxidation Defects and Improves the Response to Acutely Increased Afterload

期刊

PLOS ONE
卷 8, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0065532

关键词

-

资金

  1. National Heart, Lung, and Blood Institute [K08-HL-092333]
  2. National Institute of Aging [R21-AG-033815]
  3. Department of Energy's Office of Biological and Environmental Research

向作者/读者索取更多资源

Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to the development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone supplementation reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with C-13 labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Old mice maintained cardiac function under standard workload conditions, despite a marked decrease in unlabeled (presumably palmitate) Fc and relatively similar individual carbohydrate contributions. However, old mice exhibited reduced palmitate oxidation with diastolic dysfunction exemplified by lower -dP/dT. Thyroid hormone abrogated the functional and substrate flux abnormalities in aged mice. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据