4.6 Article

Neuroprotective Efficacy of a New Brain-Penetrating C-Abl Inhibitor in a Murine Parkinson's Disease Model

期刊

PLOS ONE
卷 8, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0065129

关键词

-

资金

  1. Michael J. Fox Foundation
  2. Parkinson's Disease Foundation
  3. San Antonio Area Foundation
  4. American Parkinson Disease Association
  5. Executive Research Council of UTHSCSA
  6. Grants-in-Aid for Scientific Research [25461425] Funding Source: KAKEN

向作者/读者索取更多资源

Experimental evidence suggests that oxidative and nitrative mechanisms account for much of the dopaminergic neuronal injury in Parkinson's disease (PD). The ubiquitously expressed non-receptor tyrosine kinase c-Abl is activated by oxidative stress and thus, may play a role in redox-mediated neurodegeneration. Recently, we reported that c-Abl is activated in PD and that a c-Abl inhibitor mitigated neuronal damage in a PD animal model, suggesting a novel neuroprotective therapeutic approach. In the studies presented here, we evaluated the efficacy of a potent and clinically relevant second-generation irreversible Abl kinase inhibitor, INNO-406, as a therapeutic agent for PD. Our studies reveal that INNO-406 is capable of preventing the progression of dopaminergic neuronal damage in a toxin-induced C57 mouse model of PD. Using bovine brain microvessel endothelium as an in vitro blood-brain barrier (BBB) model, we detected rapid and significant transfer of INNO-406. Additionally, pharmacokinetic analyses demonstrated significant nanomolar concentrations of INNO-406 in brain in the presence or absence of MPTP administration, however, INNO-406 did not alter the brain levels of MPP+ in MPTP-treated mice. Finally, we showed that 10 mg/kg of INNO-406 given to C57 mice for one week before MPTP treatment (4620 mg/kg i.p., every 2 h) and then for one week after MPTP treatment decreased the loss of dopamine in the striatum by 45% and the loss of TH+ neurons in substantia nigra pars compacts by 40%. This treatment regimen also abrogated activation of c-Abl, tyrosine phosphorylation of the Abl substrate and E3-ubiquitin ligase parkin, and accumulation of the toxic parkin substrate AIMP2. We propose that compounds of the INNO-406 class of Abl inhibitors will be useful new neuroprotective drugs for the treatment of PD-like pathology in preclinical systems that should be easily translated to the clinic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据