4.6 Article

Effects of Microparticle Size and Fc Density on Macrophage Phagocytosis

期刊

PLOS ONE
卷 8, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0060989

关键词

-

资金

  1. Bill and Melinda Gates Foundation
  2. National Institutes of Health [1R21EB013413-01]
  3. National Science Foundation
  4. Div Of Chem, Bioeng, Env, & Transp Sys
  5. Directorate For Engineering [1055437] Funding Source: National Science Foundation

向作者/读者索取更多资源

Controlled induction of phagocytosis in macrophages offers the ability to therapeutically regulate the immune system as well as improve delivery of chemicals or biologicals for immune processing. Maximizing particle uptake by macrophages through Fc receptor-mediated phagocytosis could lead to new delivery mechanisms in drug or vaccine development. Fc ligand density and particle size were examined independently and in combination in order to optimize and tune the phagocytosis of opsonized microparticles. We show the internalization efficiency of small polystyrene particles (0.5 mu m to 2 mm) is significantly affected by changes in Fc ligand density, while particles greater than 2 mu m show little correlation between internalization and Fc density. We found that while macrophages can efficiently phagocytose a large number of smaller particles, the total volume of phagocytosed particles is maximized through the non-specific uptake of larger microparticles. Therefore, larger microparticles may be more efficient at delivering a greater therapeutic payload to macrophages, but smaller opsonized microparticles can deliver bio-active substances to a greater percentage of the macrophage population. This study is the first to treat as independent variables the physical and biological properties of Fc density and microparticle size that initiate macrophage phagocytosis. Defining the physical and biological parameters that affect phagocytosis efficiency will lead to improved methods of microparticle delivery to macrophages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据