4.6 Article

Quantitative Design of Regulatory Elements Based on High-Precision Strength Prediction Using Artificial Neural Network

期刊

PLOS ONE
卷 8, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0060288

关键词

-

资金

  1. National Basic Research Program of China (973'' Program) [2012CB721104]
  2. National High Technology Research and Development Program (863'' Program) [2012AA02A701]
  3. National Natural Science Foundation of China [31170101, 31100073]
  4. Technology Innovation Action Plan'' Key Project of Shanghai Science and Technology Commission [10dz1910100]
  5. major Projects of Knowledge Innovation Program of Chinese Academy of Sciences [KSCX2-EW-J-12]

向作者/读者索取更多资源

Accurate and controllable regulatory elements such as promoters and ribosome binding sites (RBSs) are indispensable tools to quantitatively regulate gene expression for rational pathway engineering. Therefore, de novo designing regulatory elements is brought back to the forefront of synthetic biology research. Here we developed a quantitative design method for regulatory elements based on strength prediction using artificial neural network (ANN). One hundred mutated Trc promoter & RBS sequences, which were finely characterized with a strength distribution from 0 to 3.559 (relative to the strength of the original sequence which was defined as 1), were used for model training and test. A precise strength prediction model, NET90_19_576, was finally constructed with high regression correlation coefficients of 0.98 for both model training and test. Sixteen artificial elements were in silico designed using this model. All of them were proved to have good consistency between the measured strength and our desired strength. The functional reliability of the designed elements was validated in two different genetic contexts. The designed parts were successfully utilized to improve the expression of BmK1 peptide toxin and fine-tune deoxy-xylulose phosphate pathway in Escherichia coli. Our results demonstrate that the methodology based on ANN model can de novo and quantitatively design regulatory elements with desired strengths, which are of great importance for synthetic biology applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据